home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Two telltales: a tale of a tail

 
  December, 8 2005 20:13
your information resource in human molecular genetics
 
     
Not so long ago, the role of chromatin in DNA regulation was assumed to be passive. Text books spoke of the role of nucleosomes as DNA compressors – allowing the massive amount of DNA to be fitted neatly into the vanishingly small nucleus. The work of Wolffe, Workman, Allis, Felsenfeld and many others showed that, far from being passive, chromatin played a very active role in nuclear organization. In many case, chromatin is instrumental in the fundamental process of transcriptional regulation, replication and cell cycling. Many of these active roles for chromatin are mediated by molecular modifications of the histone tails. These include acetylation, phosphorylation, methylation, ubiquitination and ADP-ribosylation. These telltales, or signposts, serve to recruit other cofactors as well as to modify the properties of the underlying nucleosome.

In a landmark paper published in Nature this week, Allis and colleagues show a mechanism for the regulation of HP1 binding. HP1 is, in part, responsible for the formation of heterochromatin and, as such, is repressive. During early mitosis the chromatin must become 'looser' to allow the replication machinery access to those chromatic strands repressed in refractory herterochromatin and so HP1 release is vital for appropriate mitotic cycling. The process governing HP1 release is now elucidated.

HP1 binding to heterochromatin is mediated by a trimethylation of Histone H3 Lysine 9. This modification recruits HP1 though the binding is weak. Allis et al., have found that phosphorylation of the adjacent Serine 10 completely abolishes HP1 interaction and is responsible for the removal of HP1 during mitosis. This phosphorylation is mediated by the aurora B kinase and the work shows that inhibition of this enzyme abolishes the loss of HP1. These data, then suggest a central role for HP1, and consequently for the dual markers of Histone H3, in the mediation of cell cycle control.

This work clearly demonstrates another level of complexity in epigenetic regulation and further highlights the active role of chromatin in the fundamental processes of the nucleus


Message posted by: Simon Chandler

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.