home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
  HUM-MOLGEN -> Genetic News | search  

Gene for Fear Discovered: Implications for Anxiety Disorders

  December, 6 2005 18:09
your information resource in human molecular genetics
Knocking out a gene in the brain’s fear hub creates mice unperturbed by situations that would normally trigger instinctive or learned fear responses, researchers funded in part by the National Institutes of Health have discovered. The findings may lead to improved treatments for anxiety disorders, they suggest.

The scientific team, led by National Institute of Mental Health (NIMH) grantee and Nobel Laureate Dr. Eric Kandel, Columbia University, Dr. Vadim Bolshakov, Harvard University, a grantee of the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Drug Abuse (NIDA), and Dr. Gleb Shumyatsky, Rutgers University, report on their study in the November 18, 2005 issue of Cell.

Fear memories are so essential for survival that they are easily formed and rarely lost. The workings of fear circuitry, centered in the amygdala, an almond-shaped structure deep in the brain, are well understood. But relatively little is known about fear’s molecular basis, note the researchers.

The gene in the current study codes for stathmin, a protein that appears to be critical for the amygdala to rearrange connections and form fear memories. Stathmin normally controls this process by regulating the supply of microtubules, building materials that amygdala cells use to make structural adaptations that encode the memories. Runaway production of these building materials stymied construction of fear memories in a mouse strain molecularly engineered to lack stathmin, the researchers found.

They first showed that circuitry on the side of the amygdala known to be critical for fear learning is rich in stathmin. They then demonstrated that a cellular process critical for memory formation, long-term potentiation, is impaired there in stathmin knockout mice, due to the excess production of microtubules.

Compared to control animals, the stathmin knockout mice showed less anxiety (freezing) when they heard a tone that had previously been associated with a shock, indicating less learned fear. The knockout mice also were more prone to explore novel open space and maze environments, a reflection of less innate fear.

Message posted by: Rashmi Nemade

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.