home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Novel Discovery Of 'DCDC2' Gene Associated With Dyslexia

 
  November, 16 2005 5:26
your information resource in human molecular genetics
 
     
New Haven, Conn. — Pediatric researchers at Yale School of Medicine have identified a gene on human chromosome 6 called DCDC2, which is linked to dyslexia, a reading disability affecting millions of children and adults.

The researchers also found that a genetic alteration in DCDC2 leads to a disruption in the formation of brain circuits that make it possible to read. This genetic alteration is transmitted within families.

“These promising results now have the potential to lead to improved diagnostic methods to identify dyslexia and deepens understanding of how the reading process works on a molecular level,” said lead author Jeffrey R. Gruen, M.D., associate professor in the Pediatrics Department at Yale School of Medicine.

The study will be published in a special issue of Proceedings of the National Academy of Sciences on October 28. Gruen and first author Haiying Meng will also present the findings that same day at the American Society of Human Genetics (ASHG) meeting in Salt Lake City, Utah.

Gruen and co-authors used a statistical approach to study and compare specific DNA markers in 153 dyslexic families. “We now have strong statistical evidence that a large number of dyslexic cases—perhaps as many as 20 percent—are due to the DCDC2 gene,” said Gruen. “The genetic alteration on this chromosome is a large deletion of a regulatory region. The gene itself is expressed in reading centers of the brain where it modulates migration of neurons. This very architecture of the brain circuitry is necessary for normal reading.”

To facilitate reading, brain circuits need to communicate with each other. In reading disabilities, these circuits are disrupted. In people with dyslexia, compensatory brain circuits are inefficient and they have a hard time learning to read.

Locating this gene provided researchers with part of the reason why dyslexia occurs. Gruen said discovery of the gene and its function will lead to early and more accurate diagnoses and more effective educational programs to address the unique needs and special talents of people with dyslexia.

“We can’t continue the cookie cutter, one-size-fits-all schooling anymore,” said Gruen. “People with dyslexia are not less intelligent than others, they just learn in different ways. Tailoring programs to fit the needs of these children will enhance their success in school and be more cost effective.”

Other authors on the study were Shelley D. Smith, Karl Hager, Matthew Held, Jonathan Liu, Richard K. Olson, Bruce F. Pennington, John C. DeFries, Joel Gelernter, Thomas O’Reilly-Pol, Stefan Somlo, Pawel Skudlarski, Sally E. Shaywitz, Bennett A. Shaywitz, Karen Marchione, Yu Wang, Murugan Parmasivam, Joseph J. LoTurco and Grier P. Page.

(C) 2005 - Yale School of Medicine

Meng H, Smith SD, Hager K, Held M, Liu J, Olson RK, Pennington BF, Defries JC, Gelernter J, O'reilly-Pol T, Somlo S, Skudlarski P, Shaywitz SE, Shaywitz BA, Marchione K, Wang Y, Paramasivam M, Loturco JJ, Page GP, Gruen JR.
DCDC2 is associated with reading disability and modulates neuronal development in the brain.
Proc Natl Acad Sci U S A. 2005 Nov 8;


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.