home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

The Genetics of MLL Leukemogenesis

 
  October, 23 2007 2:34
your information resource in human molecular genetics
 
     
In the November 1st issue of Genes & Development Dr. Michael Cleary (Stanford University School of Medicine) and colleagues identify the gene Meis1 as a critical player in the establishment of leukemia stem cells, and the development of MLL leukemia.

Mixed lineage leukemia (MLL) is a distinctive type of leukemia ­ distinguished from the more prevalent acute lymphoblastic leukemia (ALL) by the presence of a break and rearrangement of chromosome number 11. The design of effective therapies to combat MLL leukemia depends upon the understanding of the unique genetic signature that underlies this disease.

This chromosomal translocation that characterizes MLL activates the histone methyltranferase enzyme called MLL, inducing it to turn-on downstream gene targets that transform blood progenitor cells into leukemia stem cells (LSCs).

While some of the downstream targets of MLL are known (Hox genes, for example), the genetic changes that are sufficient to drive MLL leukomogeneis have remained elusive. Dr. Cleary and colleagues focused their work on another group of proteins that are mis-expressed in MLL leukemias: the TALE (three-amino-acid loop extension) class of proteins.

The researchers found that one gene in particular ­ called Meis1 ­ is required for leukemia stem cell maintenance. In fact, the researchers showed that Meis1 regulates many important biological properties of the disease including differentiation arrest, cycling activity, in vivo progression and self-renewal of LSCs.

Dr. Cleary is confident that “The critical role of Meis1 and other TALE class proteins in MLL leukemia stem cells provides a promising avenue for future studies to design more selective therapies for this poor prognosis subtype of leukemia.”

Source: Genes & Development Press Release


Message posted by: Robin Kimmel

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2025 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.