home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Innate Immune Defence At Work

 
  September, 27 2006 10:33
your information resource in human molecular genetics
 
     
A genetic study to be published in The EMBO Journal could help in the design of better therapies to treat some cases of immunodeficiency and inflammation. Highly specific immune cells known as phagocytic cells patrol the blood stream and defend our body against bacterial and fungal infections, part of our so-called 'innate immune response'. One of the important ways phagocytes kill these intruders is by generating large quantities of reactive oxygen species (ROS). Some hereditary mutations stop these mechanisms from working effectively and lead to 'chronic granulomatous disease' (CGD), a life threatening condition that erodes the body's ability to combat infections. On the other hand, excessive and inappropriate generation of ROS by phagocytes damages the body's own tissues and results in severe inflammation e.g. in 'acute respiratory distress syndrome' (ARDS) or rheumatoid arthritis (RA). So far only limited information is available as to which parts of the ROS-producing complex "respond" to which particular types of stimuli, making it difficult to understand what exactly has gone wrong in these conditions.

Earlier studies had suggested that an interaction between a specific protein subunit of the ROS-generating complex - p40phox - with a small molecule messenger - PtdIns3P - may play a critical role in this type of pathogenic defence. Hawkins and colleagues engineered mice with a modification in PtdIns3P's binding domain of p40phox, allowing the precise measurement of PtdIns3P's contribution towards the innate immune response. The team observe significantly reduced ROS-production in immune cells from these modified mice and also in the effectiveness of these mice to defend against experimental bacterial infections.

These experiments unravel for the first time the specific route one of the multitude of stimuli takes to trigger innate immune defence. Future studies are likely to delineate more precise details of how complex host/pathogen interactions regulate the production of 'reactive oxygen species' and may lead to a better understanding of how to design novel therapeutic reagents to regulate this process.


Author contact

Phillip Hawkins (The Babraham Institute, Cambridge, UK)
E-mail: phillip.hawkins@bbsrc.ac.uk

(C) The EMBO Journal press release.


Message posted by: Trevor M. D'Souza

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.