home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Cancer Drug Target Chk1 May Also Be Source Of Drug Resistance

 
  September, 5 2005 21:53
your information resource in human molecular genetics
 
     
LA JOLLA, CA. A study published by The Burnham Institute in the September edition of Molecular Cell reports that a cell-cycle checkpoint protein, known to be activated by an important class of anticancer drugs, may play crucial roles in both the hampering of therapeutic actions and aiding cancer cells to "recover" and start dividing again after treatment with these drugs. The study is expected to help academic researchers and biotechnology and pharmaceutical companies design drugs that combat cancer using this checkpoint protein, but with fewer side effects.

Robert Abraham, Ph.D., former director of The Burnham Institute's Cancer Center and now vice president for oncology research at Wyeth Pharmaceuticals, together with his colleagues, found that the Chk1 protein responds with cell-survival activity to stressful conditions induced by hypoxia and certain anticancer drugs. Furthermore these same conditions target Chk1 for eventual destruction. Ironically, stimulation of Chk1 triggers certain repair responses that fight cancer while the simultaneous degradation of Chk1 can allow cancer cells to escape drug-induced death and resume progressive tumor growth.

The study suggests the Chk1 protein is critical for ensuring the repair of mutations and other errors in DNA replication before they can alter the function of a cell. If not repaired, these errors can kill the cell when it attempts to divide and proliferate. In cancer cells, Chk1 is responds as a natural defense to the therapeutic damage done by radiation and chemotherapy and attempts to effect repair to DNA damage caused by the cancer therapy, thus makes the drug therapy less effective.

The researchers also found that the chemotherapy agent campthothecin (CPT), a clinically important anticancer agent, reduced the activity of the Chk1 protein. "These findings lend strong support to the idea that inactivation of Chk1 contributes to the antitumor activity of CPT by allowing cells bearing damaged DNA to progress through the cell cycle, leading to an unsuccessful and often lethal attempt to undergo cell division," said Abraham. "Combination therapy, which pairs a chemotherapy agent with an inhibitor of Chk1, may therefore be an effective strategy to increase the efficacy of certain anticancer drugs, and may well overcome clinical resistance to these drugs."

By studying the effects of radiation and other stresses on the pathway that normally regulate Chk1, the researchers discovered that the same pathway that activates Chk1 via phosphorylation by its regulatory enzyme, ATR, also marks Chk1 for eventual destruction.

"We expect this process prevents activated Chk1 from accumulating in normal cells and prevents abnormal cell proliferation," said Abraham. "ATR activates, but also destabilizes Chk1, which creates a homeostatic mechanism that balances the genome protective function of Chk1 with the process of cell proliferation. This is a new look at drug therapy. Textbook descriptions of ATR and Chk1 don’t describe this dual role."

"The findings also provide further insight into Chk1 activation and tumor sensitivity," Abraham added. "Cancer cells rely heavily on Chk1 for survival and proliferation under stressful environmental conditions. Instead of halting abnormal growth of cancer cells, drug therapy could in effect induce Chk1 natural activity to prevent cell death in cancer cells."

Collaborators on this publication include You-wei Zhang, Diane M. Otterness, and Gary Chiang from Dr. Abraham's laboratory at The Burnham Institute; and Weilin Xie, and Franklin Mercurio of Celgene Corporation; and Yun-Cai Liu of La Jolla Institute for Allergy and Immunology.

This work was supported by grants from Johnson & Johnson, the National Institutes of Health, the Department of Defense Breast Cancer Research Program, a postdoctoral training grant from the Susan G. Komen Breast Cancer Foundation, and a Kirschstein-NRSA fellowship.

The Burnham Institute, founded in 1976, is an independent not-for-profit biomedical research institution dedicated to advancing the frontiers of scientific knowledge and providing the foundation for tomorrow's medical therapies. The Institute is home to three major centers: the Cancer Center, the Del E. Webb Neuroscience and Aging, and the Infectious and Inflammatory Disease Center. Since 1981, the Institute's Cancer Center has been a member of the National Cancer Institute's prestigious Cancer Centers program. Discoveries by Burnham scientists have contributed to the development of new drugs for Alzheimer's disease, heart disease and several forms of cancer. Today the Burnham Institute employs over 700, including more than 550 scientists. The majority of the Institute's funding derives from federal sources, but private philanthropic support is essential to continuing bold and innovative research. For additional information about the Institute and ways to support the research efforts of the Institute, visit www.burnham.org.

(C) 2005 - The Burnham Institute

Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT.
Genotoxic stress targets human chk1 for degradation by the ubiquitin-proteasome pathway.
Mol Cell. 2005 Sep 2;19(5):607-18.


Message posted by: Frank S. Zollmann

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.