|
|
An international group of researchers working in more than 20 laboratories around the globe have determined genetic blueprints for the parasites that cause three deadly insect-borne diseases: African sleeping sickness, leishmaniasis and Chagas disease. The research, funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is published in this weeks issue of Science. Knowing the full genetic make-up of the three parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania major could lead to better ways to treat or prevent the diseases they cause.
All three diseases are spread by insects. T. brucei, which causes sleeping sickness, is spread by the tsetse fly and is found in sub-Saharan Africa. The World Health Organization estimates there may be as many as 500,000 cases of sleeping sickness each year. If left untreated, sleeping sickness is fatal. Various forms of leishmaniasis are spread by the sandfly and are endemic in 88 countries on five continents. Visceral leishmaniasis, also known as kala azar, is the most severe form of the disease and causes high fever, a swollen spleen and severe weight loss before killing its victims. Cutaneous leishmaniasis, also known as Baghdad boil, produces numerous skin ulcers that can leave sufferers permanently scarred. Some 1,000 American service members have been diagnosed with cutaneous leishmaniasis according to testimony by Walter Reed Army Institute of Researchs Alan Magill, M.D., at an Institute of Medicine meeting in May 2005. T. cruzi causes Chagas disease and is spread through the infected feces of an insect sometimes called the kissing bug for its habit of biting near a persons mouth. Found throughout Central and South America, Chagas disease is particularly prevalent among the poor and claims 50,000 lives each year.
Message posted by: Rashmi Nemade
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|