home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

A Loose Fit May Be The Best Bet In Drug Design

 
  May, 16 2006 17:04
your information resource in human molecular genetics
 
     
Chemical knockoffs resembling a key thyroid-related hormone are, in certain cases, more effective than the real thing at activating the target receptor, says a new study conducted in part by researchers at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Institute on Deafness and Other Communication Disorders (NIDCD), two of the National Institutes of Health (NIH). The improved performance is related to how closely coupled the chemical and receptor are, the scientists conclude, with a loose connection being more effective than a tight one. The findings are at odds with the widely held notion that the stronger the association between a hormone and its receptor, the more effective its cellular signaling. If the findings hold true for similar hormone-receptor reactions, they could help change the way that drug therapies are designed for a host of health problems, from smell and taste disorders to heart disease, asthma, migraine, and pain. The study is published in the May 12, 2006, issue of the Journal of Biological Chemistry.

The researchers looked at thyrotropin-releasing hormone, or TRH, a hormone released in the brain that kicks off a chain of events throughout the body, including the stimulation of the thyroid gland. As with many of the body’s hormones, cells recognize TRH using a receptor belonging to a mega-family of proteins known as G-protein-coupled receptors (GPCRs), which play a lead role in cell-to-cell communication. When a hormone binds to its designated GPCR on the outside of a cell, a specific G-protein is activated within the cell, initiating a cascade of biochemical events leading to the unique and appropriate cellular response to that hormone.

By tweaking portions of the TRH molecule, the researchers developed six slightly edited versions, while retaining most of the properties of the natural hormone. Measuring the cellular response when hormone meets receptor, they found that the lower the affinity between the two, the stronger the signal that is elicited, with certain analogs performing up to twice as effectively as TRH. As to why this would be the case, the researchers suggest that a loose connection between hormone and GPCR may allow a hormone to repetitively dock to and undock from its associated GPCR, activating a succession of G-proteins, and firing signal after signal. A tight connection, alternatively, may tie up a hormone with its GPCR, activating one G-protein, and limiting its signaling ability.

In future studies, the scientists hope to determine whether their findings are consistent with other hormone-GPCR reactions. Other researchers taking part in the study represent the National Institute of Pharmaceutical Education and Research , Punjab, India.


Message posted by: Rashmi Nemade

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.