|
|
The National Institutes of Health (NIH) hailed the first comprehensive analysis of the sequence of the human X chromosome, saying that this provides sweeping new insights into the evolution of sex chromosomes and the biological differences between males and females. These studies, a detailed analysis of the X chromosomes DNA sequence and a survey of its gene activity, are published in the current issue of the journal Nature.
"These detailed analyses of the X chromosome represent a monumental achievement for biology and medicine. They are exciting examples of what is being learned from the vast trove of sequence data produced by the Human Genome Project and made freely available to researchers around the world," said Francis S. Collins, M.D., Ph.D., director of National Human Genome Research Institute (NHGRI), part of NIH, which led the U.S. component of the Human Genome Project along with the Department of Energy. The sequencing work on the X chromosome was carried out as part of the Human Genome Project at the Wellcome Trust Sanger Institute in Hinxton, England; Baylor College of Medicine, Houston; Washington University School of Medicine, St. Louis; the Max Planck Institute for Molecular Genetics, Berlin; the Institute of Molecular Biotechnology, Jena, Germany; and Applied Biosystems, Inc., Foster City, CA. In October 2004, the International Human Genome Sequencing Consortium published its scientific description of the finished human genome sequence in Nature. Detailed annotations and analyses have already been published for chromosomes 5, 6, 7, 9, 10, 13, 14, 19, 20, 21, 22 and Y. Publications describing the remaining chromosomes are forthcoming. The sequence of the X chromosome, as well as the rest of the human genome sequence, can be accessed through the following public databases: GenBank at NIH's National Center for Biotechnology Information (NCBI); the UCSC Genome Browser at the University of California at Santa Cruz; the Ensembl Genome Browser at the Wellcome Trust Sanger Institute and the EMBL-European Bioinformatics Institute; the DNA Data Bank of Japan; and EMBL-Bank at the European Molecular Biology Laboratory's Nucleotide Sequence Database. For complete article go to NIH News.
Message posted by: Rashmi Nemade
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|