|
|
Researchers from the Sloan-Kettering Institute, led by Dr. Lorenz Studer, have discovered a novel type of neural stem cell, which has a broader differentiation potential than previously identified neural stem cells.
In culture, neural stem cells (NSCs) can readily differentiate into neuronal and glial subtypes, but their ability to differentiate into region-specific neuronal cell types is limited. Dr. Studer and colleagues isolated and cloned a population of neural rosette cells (R-NSCs), which have an expanded neuronal subtype differentiation potential. Dr. Studer and colleagues demonstrate that R-NSCs can differentiate along both the CNS and PNS lineages, and are capable of in vivo engraftment. Furthermore, the researchers identified biomarkers unique to the R-NSC type, as well as signaling pathways required for the maintenance of the R-NSC type. “Our data suggest that R-NSCs may represent the first neural cell type capable of recreating the full cellular diversity of the mammalian nervous system. As such, R-NSCs should have a major impact for applications in regenerative medicine and have the potential to become the "embryonic stem cell equivalent" of the nervous system,” explains Dr. Studer.
Source: Genes & Development Press Release
Message posted by: Robin Kimmel
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|