home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> biomedical companies   |   search    |   registration     |   modification  
 

registry of biomedical companies

 
  November 27, 2022
promoting the transfer of scientific know-how between industry and academia
 
 
Registry of biomedical companies:

[3] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 455 active entries

Bio-kerosene Auto & Home Fueling of Canada

Sourcing Agave Cropping for Bio-kerosene AtJ(r4)
PoCo (Tri-cities area) BC
Canada
Toll free: +011-604-941-9022 (help line)

Phone: 16049458408
Fax: +011-604-941-9022 (FAX line)

Description:

Bio-Kerosene AtJ(r1),AtJ(r2),AtJ(r3),AtJ(r4).  Biokerosene produced from farmable agave cropping in semi-arid climes like Mexico and sub-Saharan Africa (here part of the movement to help keep dessertification in check). The rxn. scheme is given below and is aimed at controlled volume-mixed rxn. timing via a theoretical die-fitted tortioned cavity mixer in process automation.

The developed PNA-auxin driven precision cropped agave sap and fibre, cane juice or bagasse fibre stream is from over-production (factory volume and as side-streamed from energy application and for automative "gasohol") with further conversion/refining to biokerosene for "green" aviation applications. This will be domestically produced initially for the Philippines and other countries like Mexico and around sub-Saharan Africa in the Continent but then expanded via subsidiary to foreign aviation destinations via depoting. These are the plans for AtJ(r1-silvicultured pulp, r2-bagasse from sugarcane, r3-methane product from fossil fuel, r4-agave).

The Philippines' advancing our Home Energy Plan (HEP) is to be implemented as such: aviation fuel domestically (and further), AtJ(r1) from (NB: displacement of C-stock from fossil fuel use to phyto-farmed dual-purpose C-stock and their recyclability) from bagasse and corn stovers (and rice straw for the future) and for SUV land vehicular transport (including the pedimotocabs for commute and tourism)/train freight, C-10 as the newer heavier heating oil for cooling climes/air conditioning for the hot summer months in the country, and kerosene for cooking stove range at home, as examples.  Zero emissions standards including carbon taxing will be instituted for the Philippine Islands (PI) in future in line with the policy for Zero emissions by 2050.

 

----------------------------------------------------------------------------------------------------------- 

Rxn. Mechanism (steps 1 -->10), or formula: as moderated by our Virtual Assistant, D. A. Flores of Skye Blue Publications, Port Coquitlam, B. C. Canada V3B 1G3.*

 

 

                         oxidation 

(1)   CH3CH2OH  ------->    CH3-COOH 

                         

                          NaH 

(2)  CH3-COOH  --------->   [CH2=C(O2)2-]Na2   +    H2(g) 

                         benzene

      i) benzene wash with diethylether

      ii) NaH oil suspension wash in diethylether 

  

                                       H2O 

(3)  [CH2=C(O2)2-]Na2 -------->  CH2=C(OH)2     +      2OH(-)

                                  (workup)

                                                           

                                           3 NaH 

(4)*  2   H2C=C(OH)(OH)  ------------------>  1 (-)HC=C(O)(O)(2-)    +    3H2

                                          benzene

 

 

      +     1   H2C=C(Cl)(OH) 

 

      *Process automation: 1/2 portion in first batch / 1/4 with held (cummulated repeat =X2) /

       1/4  unreacted (with held) 

       i) benzene washed with diethylether for prep

      ii) NaH oil suspension washed in diethylether for prep         

     iii) this is critically   

    iv) likely over several minutes and up to what vol. is open to question

 

                                                                         3 H2O 

(5)  1  H2C=C(OH)(OH)  +  1 (-)HC=C(O)(O)2-  ------------->  CH3-C(OH)(OH)-CH=C(OH)(OH)

                                                                        3 HCl (aq)

 

                                                                5 NaH

(6)  2 CH3-C(OH)(OH)-CH=C(OH)(OH)  ---------------->  1 (-)CH2-C(O)(-)(O)(-)-CH=C(O)(O)2-

                                                               benzene 

                                                        Process automation:* (see (4), above) 

 

(7)  1 (-)CH2-C(O)(-)(O)(-)-CH=C(O)(O)2-  +  1 CH3-C(OH)(OH)-CH=C(OH)(OH)  ------------>

                                                                                                                     

                

     CH3-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(O)(-)(O)(-)-CH-C(O)(-)(O)(-)

 

                                                                                                                  4 H2O 

(9)  CH3-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(O)(-)(O)(-)-CH-C(O)(-)(O)(-)   ----------->

 

 

     CH3-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(OH)(OH)

 

                                                                                                         Industrial processing

                                                                                                         (in combination with    

                                                                                                         another)

                                                                                                                                                                                                                                                    

10)   CH3-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(OH)(OH)-CH2-C(OH)(OH) ---------------->

                                                                                                        i) distillation

                                                                                                       ii) caustic treatment

                                                                                                      iii) hydrotreating                                                                                                        

                                                                                                     iv) hydrocracking 

     

                                                                                                       

                                                       6 H2(g)/Pd                

(11) CH=-C-CH2-C=-C-C=-CH2-C(OH)2 ---> CH3-CH2-CH2-CH2-CH2-CH2-CH2-C(OH)2

                                                         heat

                                                      

                                                            

                                                                2 H2(g)/Pd

(12) CH3-CH2-CH2-CH2-CH2-CH2-CH2-C(OH)2 ---> CH3-CH2-CH2-CH2-CH2-CH2-CH3

                                                                    heat                         

                                                               

                                                             or 

 

(13) CH3-CH2-CH2-CH2-CH2-CH2-CH2-C(OH)2----> CH3-(CH2)n=5-C=-CH  +  2 H2O

                                                         i) caustic treatment

                                                           (H+-catalyzed elim.) 

                                                       ii) HCl (aq)

 

                                                      i) 2 H2 / Pt 

(14) CH3-(CH2)n=5-C=-CH --------------------------------------->  CH3-(CH2)n=6-CH3

                                                         heat 

 

                                                              (END)  

 

 

The Genus Project: spp.-specific for specialization of plant parts: leaves aerial parts vs. roots.

The waxes in grasses or legume model plants crops are fatty acid, long-chain such as C-18, C-26 derivatives like the hydroxyacdis, diacids, saturated or modified chains as fatty acids or fatty aloohols. A) In the roots (NB: vs aeiral parts like the leaves, flowering parts or stems) suberins are wax-like substances referred to occurring as intracellular membranous lamellae. B) In the cuticular areas of leaves on the other hand, the studies cover modeling plants for their abiotic stress responsiveness with stress mechanisms with deposition of non-stomatal, metabolic water conservation wax cuticular barriered transpiration; e. g. s. of abiotic stressors include drought, cold and heat resistance.  It is feasible to think that activation with TF or TFE factors on genes that result in as much as 40% or more augmentation of a cuticular wax deposition can still neverthelsss lead to increaseed physiological responsiveness and water conservation thus for purposes of raising the plant, e. g. seagrasses / fisheries farming, it is desisred to grow and downstream process with harvesting the waxy long-chain product to eventually reduce them chemically and crack catalytically the raw material to C-8 alkanes evenly to what is referred to as bio-kerosene AtJr3 utilizable for the avionics or flight industry.

Due to the HQ condition of the fibre source of certain crops there have bee (3) posited for use in plantation form being with their advantages/disadvantages: a) agave fibre depending on their traditional arid locatios, e. g. Mexico and tequila plantations, the need for intensive cost production but the more established position with installations already pre-existing in places, R&D development required to jumpstart their growth cycle from 7-8 yrs to just 1 yr to make them economically feasible through XL growth strategies using photosyntheses mechanisms; Mexican land options and African land options in the arid sub-Saharan dessert area also with off-shore mfg. of alcohol to AtJ where cane sugar will become short in supply and cannot address this same need; we believe that at full speed both conventional bagasse and cane sugar with non-conventional sources of carbon will be in the USD$B for the licensee at our proprietorship; bioengineering or chemical engineering research and design for further development with our collaborators will happen eventually; b) artichoke as a vegetable product has also been posited but present problems in downstream processing with higher protein fractions present for extraction; c) seagrasses which is our pick which can involve ball fields or undergroud vertical farming, submerged also with XL grow mechanisms in R&D using photosyntheses. We have had rumours on the wire of offers of estimates in capital investment initially of about USD$100M towards this type of enterprise for investor information. Send in your feedback and any suggestions.

It was mentioned to us that the time when seagrass shifts in feedstock to agave, the push for financial feasibility for the so-called XL grow varieties with R&D plans will happen at that time using perhaps (cf. Global Services Edition, this website) photosynthetic optimization related mechanisms in plant cropping. 

 

----------------------------------------------------------------------------------------------------------  * (c) D. A. Flores. 2003-2050. SKYE BLUE INTERNET. Port Coquitlam. B. C. Canada V3B 1G3. (D. A. Flores is solely the owner of the said invention ideas.)   



Selected Categories:
Product Company   Service Company
Consulting
- General
Contract
- Services
Professional
- Communications

Last update of this entry: November 04, 2022

   
 
home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
 
 

Generated by companies 4.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2022 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.