home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Regaining Running in Paralyzed Rats

 
  October, 1 2009 17:39
your information resource in human molecular genetics
 
     

A complex combination of drugs, electrical stimulation and regular exercise can enable paralyzed rats to walk and even run on a treadmill. The study published online this in Nature Neuroscience suggests that regeneration of severed nerve fibers is not required for paraplegic rats to learn to walk again. This finding may have implications for rehabilitation after spinal cord injuries

The spinal cord contains nerve circuits that can by themselves, without input from the brain, generate rhythmic activity to drive leg muscles in a way that resembles walking. Numerous studies have attempted to tap into this circuitry to help victims of spinal cord injury, but while leg motion can indeed be elicited, no weight-bearing walking has yet been achieved.

Grégoire Courtine and colleagues subjected rats to a complete spinal injury, such that they had no voluntary movement in their hind limbs. They set these paralyzed rats on a slowly moving treadmill while administering certain drugs as well as applying specific electrical currents to the spinal cord below the point of injury. This triggered the spinal rhythm-generating circuitry and elicited walking motion in the paralyzed hind limbs. Daily treadmill training over several weeks enabled full weight bearing walking, even backwards, sideways, and running.

The rats' injury still left the connection between the brain and the spinal cord-based rhythmic walking circuitry interrupted. The rats were therefore unable to walk of their own accord. In human patients, since neuroprosthetic devices may in principle bridge spinal cord injuries to some extent, activating the spinal cord rhythmic circuitry as this study has may help in rehabilitation after spinal cord injuries.

Author contact:

Grégoire Courtine (University of Zurich, Switzerland)
E-mail: gregoire.courtine@bli.uzh.ch

Abstract available online.

(C) Nature Neuroscience press release.


Message posted by: Trevor M. D'Souza

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.