home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

New Class Of Antibiotics Stops Pathogens In Their Genetic Tracks

 
  October, 28 2003 12:35
your information resource in human molecular genetics
 
     
Dallas, Oct. 23 Cumbre Inc., a privately held biopharmaceutical company, announced today the publication of a research paper in the October 24, 2003 issue of Science entitled “A new class of bacterial RNA polymerase inhibitor affects nucleotide addition.” The paper describes the identification and characterization of the novel “CBR703” class of inhibitors through combined efforts in biochemistry, genetics and structural modeling with contributions from both Cumbre researchers and scientists from the University of Wisconsin-Madison.

Co-author Robert Landick, Ph.D., a Professor of Bacteriology at the University of Wisconsin-Madison, whose laboratory is primarily focused on studies of regulatory mechanisms that control gene expression in bacteria, commented, "The Cumbre RNA polymerase inhibitors are a major breakthrough. They give us a powerful new tool to study the mechanism of the central enzyme in the process of gene expression. At least as importantly, they also hold great promise for the development of new antibiotics that target bacterial pathogens, which is now a high-priority need in both medicine and bio-defense.”

A. Simon Lynch, Ph.D., Cumbre’s Director of Research, added “We are excited about the development potential of the CBR703 series, and are pleased to be able to contribute to the RNA polymerase research community through provision of a novel experimental tool. We hope that ongoing efforts to determine high resolution X-ray structures of RNA polymerase-inhibitor complexes will both aid Cumbre’s antibiotic development program and yield additional insight regarding the fundamental processes underlying the transcription elongation cycle.”

Cumbre, a privately held biopharmaceutical company founded in February 2001, is solely focused on the discovery, development, and commercialization of novel antibacterial therapeutics. Discovery programs combine unique target-directed biochemical screens with a novel cell-based approach. The most advanced development program is directed toward the optimization of a novel compound series for activity against pathogenic bacteria growing in the biofilm state.

(214) 631-4700 e-mail: info@cumbre.net

Irina Artsimovitch, Clement Chu, A. Simon Lynch, and Robert Landick
A New Class of Bacterial RNA Polymerase Inhibitor Affects Nucleotide Addition
Science Oct 24 2003: 650-654


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2016 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.