home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

White blood cell plays key role in body's excessive repair response to asthma

 
  October, 6 2003 15:39
your information resource in human molecular genetics
 
     
Researchers in London and Montreal report today that they have discovered an important link in the development of the body's response to allergic asthma.

They have found that one type of white blood cell, an eosinophil, which was known to cause inflammation of lung airways, is also responsible for driving the process which leads to an excessive 'repair response' by the body.

The response, which is called airway remodelling, causes structural changes in the airway walls and can sometimes lead to permanent scarring and narrowing of the airways, resulting in worse and repeated asthma episodes for sufferers.

The team of scientists from Imperial College London, the Royal Brompton Hospital, London, Guys Hospital, London, McGill University Hospital Centre, Montreal, and St Barts and the Royal London Hospitals Trust, report that the damaging effects of eosinophils in the remodelling process can be significantly reduced by injection of a single specific antibody.

Their research published today in the Journal of Clinical Investigation shows that the monoclonal antibody anti-Interleukin-5 (mepolizumab) both reduces the number of eosinophils in the bronchi and significantly decreases the deposition of special proteins associated with the remodelling process.

The scientists hope their work may lead to the development of 'really effective' new asthma treatments that work by interfering with the remodelling process.

Leader of the research, Professor Barry Kay, of Imperial College London and the Royal Brompton Hospital, comments: "This research could be of considerable long term benefit in developing more effective treatments in asthma. We already know that eosinophils cause inflammation in the bronchi, but it is the subsequent repair process which may be more important in long term chronic disease.

"In the future, drugs may be available which completely interfere with the process of scarring or re-modelling, and may prove beneficial in the long term treatment of asthma."

Professor Kay adds: "Anti-IL-5 will not be a magic bullet for asthma sufferers, but it could be an important first step in developing really effective drugs which interfere with re-modelling."

Anti-IL5, which removes Interleukin-5, a key molecule in eosinophil development, was given to mild asthmatics as part of a randomised, double blind, placebo controlled protocol.

The 24 patients in the study received three infusions of either the antibody or a placebo dummy injection one month apart, and had a biopsy of the lining of the breathing tubes before and after each infusion. The scientists measured levels of extra cellular matrix (ECM) proteins in the biopsy samples, which indicated the levels of remodelling activity in the airway.

The research was supported by grants from GlaxoSmithKline plc and the Wellcome Trust.

For further information please contact:

Tony Stephenson
Imperial College London Press Office
Tel: +44 (0)20 7594 6712
Mobile: +44 (0)7753 739766
E-mail: at.stephenson@imperial.ac.uk

Notes:

1. Anti-IL-5 treatment (mepolizumab) reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics Journal of Clinical Investigation, October 2003, Volume 112, Number 7.

2. Consistently rated in the top three UK university institutions, Imperial College London is a world leading science-based university whose reputation for excellence in teaching and research attracts students (10,000) and staff (5,000) of the highest international quality.
Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that enhance the quality of life and the environment - underpinned by a dynamic enterprise culture.
Website: www.imperial.ac.uk


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2016 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.