home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Arvid Carlsson, Paul Greengard and Eric Kandel receive the Nobel Prize in Medicine

 
  October, 9 2000 22:25
your information resource in human molecular genetics
 
     
Press release: http://www.nobel.se/announcement/2000/medicine.html

Summary

In the human brain there are more than hundred billion nerve cells. They are connected to each other through an infinitely complex network of nerve processes. The message from one nerve cell to another is transmitted through different chemical transmitters. The signal transduction takes place in special points of contact, called synapses. A nerve cell can have thousands of such contacts with other nerve cells.
The three Nobel Laureates in Physiology or Medicine have made pioneering discoveries concerning one type of signal transduction between nerve cells, referred to as slow synaptic transmission. These discoveries have been crucial for an understanding of the normal function of the brain and how disturbances in this signal transduction can give rise to neurological and psychiatric diseases. These findings have resulted in the development of new drugs.


Arvid Carlsson, Department of Pharmacology, University of Gothenburg is rewarded for his discovery that dopamine is a transmitter in the brain and that it has great importance for our ability to control movements. His research has led to the realization that Parkinson's disease is caused by a lack of dopamine in certain parts of the brain and that an efficient remedy (L-dopa) for this disease could be developed. Arvid Carlsson has made a number of subsequent discoveries, which have further clarified the role of dopamine in the brain. He has thus demonstrated the mode of action of drugs used for the treatment of schizophrenia.


Paul Greengard, Laboratory of Molecular and Cellular Science, Rockefeller University, New York, is rewarded for his discovery of how dopamine and a number of other transmitters exert their action in the nervous system. The transmitter first acts on a receptor on the cell surface. This will trigger a cascade of reactions that will affect certain "key proteins" that in turn regulate a variety of functions in the nerve cell. The proteins become modified as phosphate groups are added (phosphorylation) or removed (dephosphorylation), which causes a change in the shape and function of the protein. Through this mechanism the transmitters can carry their message from one nerve cell to another.


Eric Kandel, Center for Neurobiology and Behavior, Columbia University, New York, is rewarded for his discoveries of how the efficiency of synapses can be modified, and which molecular mechanisms that take part. With the nervous system of a sea slug as experimental model he has demonstrated how changes of synaptic function are central for learning and memory. Protein phosphorylation in synapses plays an important role for the generation of a form of short term memory. For the development of a long term memory a change in protein synthesis is also required, which can lead to alterations in shape and function of the synapse.


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2016 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.