home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
  HUM-MOLGEN -> Genetic News | search  

Protein Translation Factor Causes Breast Cancer

  June, 19 2009 7:51
your information resource in human molecular genetics

Factors that cause a particularly aggressive form of breast cancer are reported online in Nature Cell Biology. An over-abundance of a regulator of protein expression in patients with inflammatory breast cancer induces factors that make cells adhesive. These factors then transform cells into metastatic tumours. This finding could aid in the development of a targeted therapy that can stop the spread of this type of cancer.

Inflammatory breast cancer (IBC) is the most lethal form of breast cancer due to its rapid spread. Robert Schneider and colleagues show that IBC is characterized by the overexpression of a protein called eIF4GI. They found that, while this factor did not affect overall protein production, it did lead to increased levels of the cell adhesion regulators E-cadherin and p120 catenin, which allow cancers cells to clump together, rather than attaching to the surrounding tissue. These clumps of cancer cells can enter the circulation and spread throughout the body in a process called passive metastasis, which accounts for the lethality of IBC. Silencing eIF4GI, E-cadherin or p120 catenin all impair tumour growth and invasion in a mouse model for the cancer and the authors show that the role of eIF4GI in breast cancer depends on the de-regulation of p120 catenin.

Pinpointing the molecular causes of IBC metastization raises the hope that targeted therapeutic intervention can stop the spread of this particularly aggressive form of breast cancer.

Author contact:

Robert Schneider (New York University, School of Medicine, NY, USA)
E-mail: robert.schneider@nyumc.org

Abstract available online.

(C) Nature Cell Biology press release.

Message posted by: Trevor M. D'Souza

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.