|
|
In the June 15th issue of Genes and Development, Drs. Jay Dunlap and Jennifer Loros, with colleagues at Dartmouth Medical School, have finally cloned the band gene, and have found that it is an allele of ras-1.
This finding posits RAS signaling as a key mediator of circadian output. The fungus Neurospora crassa is one of the best studied laboratory systems for circadian rhythms. However, over the past 50 years, almost all of the work done on Neurospora has used laboratory strains carrying the band mutation, because it enables researchers to visualize the fungus' daily circadian growth cycles. Research on Neurospora using this strain has contributed to understanding the basis of jet lag as well as some affective disorders. While the band mutation has facilitated Neurospora clock observation, researchers are only now realizing what protein is encoded by the band gene, and how the subtle nature of the disruption in the band gene affects Neurospora circadian rhythms. The Dartmouth team demonstrate that the band mutation is a dominant point mutation in ras-1 that causes a slight increase in GTP exchange, and therefore slightly higher activity levels. Says Dunlap, "Understanding the molecular nature of band makes us all look at output from the circadian clock in a different and clearer way. It's been a long time coming." Author Contact: Jay Dunlap (Dartmouth Medical School, Hanover, NH, USA) Jay.Dunlap@Dartmouth.edu
Source: Genes and Development Press Release
Message posted by: Robin Kimmel
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|