home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

A Step Forward in Stem Cell Research

 
  June, 28 2005 16:03
your information resource in human molecular genetics
 
     
NEW YORK, June 27, 2005 - According to research published today, investigators from Memorial Sloan-Kettering Cancer Center (MSKCC) have used new techniques in the laboratory that allowed them for the first time to derive unlimited numbers of purified mesenchymal precursor cells from human embryonic stem cells (HESCs). Mesenchymal precursor cells are capable of giving rise to fat, cartilage, bone, and skeletal muscle cells, and may potentially be used for regenerative stem cell therapy in bone, cartilage, or muscle replacement.

The new study, demonstrating the specialized techniques for isolating mesenchymal precursors and generating, purifying, and differentiating those cells in culture, is published online and freely available in the journal PLoS Medicine (Public Library of Science).

Researchers took two lines of completely undifferentiated HESCs and by culturing them in the presence of mouse cells, stimulated them to turn into mesenchymal cells. They then treated these cells with compounds to make them change into specialized bone, cartilage, fat, and muscle cells. According to the study, researchers were able to confirm that these cells were all human cells and that there was no evidence that the cells became cancerous.

Mesenchymal precursors derived from HESCs are different from adult mesenchymal cells because they can efficiently differentiate into skeletal muscle (adult mesenchymal cells do not) in addition to fat, cartilage, and bone. Limited numbers of mesenchymal stem cells have been isolated from adult bone marrow and connective tissues, but harvesting these cells from any of these sources requires invasive procedures and the availability of a suitable donor. The capacity of these cells for long-term proliferation is also poor. In contrast, HESCs could provide an unlimited number of specialized cells.

According to Lorenz Studer, MD, PhD, Head of the Stem Cell and Tumor Biology Laboratory at MSKCC and senior author of the PLoS Medicine study, the high purity, unlimited availability, and multi-potentiality of mesenchymal precursors derived from HESCs will provide the basis for preclinical mouse studies to assess the safety of these cells. The investigators have already taken the next step in this research and are testing the therapeutic potential of embryonic stem cell-derived muscle cells in animal models of muscle disorders.

Tiziano Barberi, PhD, of the Stem Cell and Tumor Biology Laboratory, is the first author of the work, which was supported in part by the Kinetics Foundation.

©2005 Memorial Sloan-Kettering Cancer Center


Barberi T, Willis LM, Socci ND, Studer L.
Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells.
PLoS Med. 2005 Jun;2(6):e161.


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2016 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.