|
|
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is a common neurodegenerative disease, affecting only motor neurons and killing about 1 in every 1,000 people. Awareness of the disorder has been raised by public figures who have had (or have) it-Lou Gehrig, the legendary baseball player, died shortly after first showing symptoms, and Stephen Hawkins, the astrophysicist, suffers from a slower form of the disease, losing speech and movement while conserving his legendary brain power. In less than 2% of people with ALS, the disease is caused by mutation of the gene encoding the superoxide dismutase SOD1, an enzyme involved in the control of oxidative stress. Over 98% of ALS cases are of unknown cause.
On page 131 (Nature Genetics, Vol. 28, No. 2, 01 June 2001), Peter Carmeliet (of University of Leuven, Belgium) and colleagues implicate the vascular endothelial cell growth factor (VEGF) in adult-onset degeneration of motor neurons in mice. They originally set out to modify the 'control' region upstream of the VEGF gene, so as to repress the increased rate of production of VEGF in response to oxygen deprivation (hypoxia). Surprisingly, the mutant mice developed an age-dependent degeneration of motor neurons, reminiscent of ALS in humans. This indicates that a primary cause of ALS may be a chronic deficit in VEGF-dependent supply of blood (and its bio-available oxygen) to motor neurons. The authors also demonstrate that VEGF directly affects the survival of motor neurons, and thus indicate another potential means by which aberrations in VEGF may give rise to ALS. Pate Skene (of Duke University, USA) and Don Cleveland (of University of California in San Diego, USA) suggest, in an accompanying News & Views article that, of all the neurons in the body, motor neurons are the most sensitive to deficits in the blood supply because they are among the largest cells in the body and thus have extremely high metabolic needs. The mice obtained by Carmeliet and collaborators provide an interesting animal model with which to explore possible interactions between SOD1, VEGF, and other cellular components in the pathogenesis of motor neuron disorders. Whether mutations affecting VEGF levels result in ALS will now be the focus of intense investigation. And, as VEGF and its receptors are the targets of current anti-cancer drugs-designed to deprive tumors of a blood supply-the possible side effects of such drugs on motor function should draw the attention of oncologists. CONTACT: Dr. Peter Carmeliet University of Leuven Leuven, Belgium Telephone: +32 16-34-57-74 Fax: +32 16-34-59-90 Email: peter.carmeliet@med.kuleuven.ac.be Dr. Pate Skene Duke University Durham, North Carolina, USA Telephone: +1 (919) 681-6346 Email: skene@neuro.duke.edu Dr. Don W. Cleveland Ludwig Institute for Cancer Research La Jolla, California, USA Telephone: +1 (858) 534-7811 Fax: +1 (619) 534 7659 Email: dcleveland@ucsd.edu (C) Nature Genetics press release.
Message posted by: Trevor M. D'Souza
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|