home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Scientists develop new color-coded test for protein folding

 
  April, 19 2005 8:23
your information resource in human molecular genetics
 
     
Every protein—from albumin to testosterone—is folded into a unique, three-dimensional shape that allows it to function properly. Now Stanford University scientists have developed a simple test that instantly changes color when a protein molecule attached to a gold nanoparticle folds or unfolds. The new technique, which works on the same principle as ordinary pH tests that measure the acidity of water, is described in the March 2005 issue of the journal Chemistry and Biology.

"What we've developed is a simple and inexpensive sensor for determining when a protein changes its conformation," said study co-author Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Science in Stanford's Department of Chemistry. According to Zare, the new sensor may eventually provide biomedical researchers a fast, affordable method for detecting antibodies and other disease-related proteins.

Acid and base

In their experiment, Zare, postdoctoral fellow Soonwoo Chah and graduate student Matthew R. Hammond created a liquid solution containing nano-sized particles of gold saturated with a protein called cytochrome c.

"We chose gold nanoparticles because they are simple to prepare, easy to control and cost effective," the authors wrote. "To the best of our knowledge, however, gold nanoparticles have not been previously used to investigate the folding and unfolding of proteins."

The initial batch of gold-cytochrome solution had a rosy red hue and a pH value of 10—about the same as an over-the-counter heartburn medication. But when drops of hydrochloric acid were added, the solution began to change color, turning purple when the pH reached 5.8 and light blue at pH 4, which is close to the acidity of wine.

Lab analysis revealed that additional hydrochloric acid was causing the cytochrome c molecules to unfold. As a result, gold nanoparticles coated with cytochrome c began clumping together—a process that caused the solution to quickly change from red to blue as the acidity increased.

The researchers were surprised to discover that, when the pH was raised from 4 to 10, the blue solution turned reddish once again—a strong indication that some cytochrome c molecules had refolded into their original three-dimensional shape. In fact, the experiment showed that, when attached to gold film, cytochrome c can fold, unfold and refold countless times depending on the acidity of the solution, thus making it an ideal tool for detecting conformational changes in proteins.

"While we're not ready to mass-produce this technology, we believe it will eventually be useful for testing other, more complicated proteins," Zare said, noting that a gold nanoparticle sensor could turn out to be a quick and inexpensive way for doctors to identify antibodies and other signs of infection in the blood stream. Over the next few months, he and his colleagues plan to re-do the experiment using other protein molecules.

The Chemistry and Biology study was supported by a grant from the National Science Foundation

(C) 2005 Stanford University

Chah S, Hammond MR, Zare RN.
Gold nanoparticles as a colorimetric sensor for protein conformational changes.
Chem Biol. 2005 Mar;12(3):323-8


Message posted by: Frank S. Zollmann

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.