home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Detection Of DNA On Nanotubes Offers New Sensing, Sequencing Technologies

 
  February, 28 2006 19:58
your information resource in human molecular genetics
 
     
CHAMPAIGN, Ill. — Researchers at the University of Illinois at Urbana-Champaign who recently reported that DNA-wrapped carbon nanotubes could serve as sensors in living cells now say the tiny tubes can be used to target specific DNA sequences. Potential applications for the new sensors range from rapid detection of hazardous biological agents to simpler and more efficient forensic identification.

In the Jan. 27 issue of the journal Science, chemical and biomolecular engineering professor Michael Strano and his students reported that single-walled carbon nanotubes coated with DNA could be placed in living cells and detect trace amounts of harmful contaminants. In a paper accepted for publication in the journal Nano Letters, and posted on its Web site, the researchers report they have taken the technique a significant step further.

“We have successfully demonstrated the optical detection of selective DNA hybridization on the surface of a nanotube,” said Strano, who is also a researcher at the Beckman Institute for Advanced Science and Technology and at the university’s Micro and Nanotechnology Laboratory. “This work opens possibilities for new types of nanotube-based sensing and sequencing technologies.”

In its natural state, DNA is in the double stranded form, consisting of two complementary strands, each resembling the side of a ladder and having a specific sequence of nucleotide bases as rungs. Hybridization refers to the spontaneous binding of two complementary strands through base pair matching.

By wrapping one strand of DNA around the surface of a carbon nanotube, the researchers can create a sensor that is targeted for a particular piece of complementary DNA. When the complementary DNA then binds to the DNA probe, the nanotube’s natural near-infrared fluorescence is shifted slightly, and can readily be detected.

“The optical detection of specific DNA sequences through hybridization with a complementary DNA probe has many potential applications in medicine, microbiology and environmental science,” said Esther Jeng, a graduate student at Illinois and the paper’s lead author. “For example, this system could be used in genomic screening to detect sequences that encode for genetic disorders, and that are precursors to diseases such as breast cancer.”

“Optical detection allows for passive sensing of hybridization, meaning there is no need to pass voltage or current through the system,” Jeng said. “Furthermore, optics yield high-resolution signals and require a relatively simple setup. And, because our detection setup is in solution, we can sense in a natural biological environment.”

Co-authors of the paper with Strano and Jeng are undergraduate students Joseph Gastala, Anthonie Moll and Amanda Roy. The work was funded by the National Science Foundation.

Editor’s note: To reach Michael Strano, call 217-333-3634; e-mail: strano@uiuc.edu.

(C) 2006 - University of Illinois at Urbana-Champaign

Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS.
Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes.
Science. 2006 Jan 27;311(5760):508-11.


Message posted by: Frank S. Zollmann

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2017 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.