home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

A New Player In Huntington's Disease?

 
  February, 18 2002 3:55
your information resource in human molecular genetics
 
     
Huntington's disease (HD) is an inherited degenerative brain disease which affects thousands of people in western countries and for which there is no effective cure or treatment available at present. HD is due to mutations of the ‘huntingtin’ gene. The corresponding mutant Huntingtin protein (Htt) is prone to aggregation. While formation of Htt aggregate correlates with HD pathogenesis, it is still unclear whether it is actually causal for neural loss.

In the March issue of Nature Cell Biology (article also published online), Crislyn D'Souza-Schorey and her colleagues at the University of Notre Dame in Illinois now show how Htt aggregation can be regulated by the arfaptin2 protein. Thus arfaptin-2 is a potentially important player in HD pathogenesis and represents a viable target for successful therapeutic intervention in the treatment of HD.

D'Souza-Schorey and colleagues show that expression of arfaptin in cultured cells induces the formation of aggregates containing the Htt protein and arfaptin2 proteins. Expression of the C terminal end of the protein had a similar effect as the full length protein. In contrast, expression of a truncated protein lacking the N terminal end, actually reduced Htt aggregation, so that could prove to be a valuable tool in clinical research. The authors also found increased arfaptin levels in the brain of a mouse model of HD as compared to the brain of healthy mice. And arfaptin2 localizes to Htt aggregates in diseased brains.

So how does arfaptin2 regulate Htt aggregation? Arfaptin2 was previously shown to regulate cytoskeletal remodelling, but the evidence so far is that arfaptin's affects on Htt aggregation is independent on its effects on the cytoskeleton. The authors have further data that are consistent with a different model: arfaptin2 would control the balance between Htt aggregation and its degradation, by direct inhibition of the proteasome.

In any case, this new link between arfaptin2 and Htt opens exciting new therapeutical strategies to combat HD, which now need to be explored in vivo.

Author contact:

Dr Crislyn D'Souza-Schorey
Department of Biological Sciences
University of Notre Dame
Notre Dame, IN, USA
Tel: +1 219 631 3735
E-mail: D'Souza-Schorey.1@nd.edu

(C) Nature Cell Biology press release.


Message posted by: Trevor M. D'Souza

print this article mail this article
Bookmark and Share this page (what is this?)

Social bookmarking allows users to save and categorise a personal collection of bookmarks and share them with others. This is different to using your own browser bookmarks which are available using the menus within your web browser.

Use the links below to share this article on the social bookmarking site of your choice.

Read more about social bookmarking at Wikipedia - Social Bookmarking

Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2016 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.