home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Development Of A Novel Systemic Gene Delivery System For Cancer Therapy With A Tumor-Specific Cleavable PEG-Lipid

 
  January, 4 2007 0:45
your information resource in human molecular genetics
 
     
Development Of A Novel Systemic Gene Delivery System For Cancer Therapy With A Tumor-Specific Cleavable PEG-Lipid

Gene Therapy (2007) Vol. 14, pp.68–77.

Authors

H. Hatakeyama, H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, M. Ueno, H. Kobayashi, H. Kikuchi and H. Harashima

Abstract

For successful cancer gene therapy via intravenous (i.v.) administration, it is essential to optimize the stability of carriers in the systemic circulation and the cellular association after the accumulation of the carrier in tumor tissue. However, a dilemma exists regarding the use of poly(ethylene glycol) (PEG), which is useful for conferring stability in the systemic circulation, but is undesirable for the cellular uptake and the following processes. We report the development of a PEG-peptide-lipid ternary conjugate (PEG-Peptide-DOPE conjugate (PPD)). In this strategy, the PEG is removed from the carriers via cleavage by a matrix metalloproteinase (MMP), which is specifically expressed in tumor tissues. An in vitro study revealed that the PPD-modified gene carrier (Multifunctional Envelope-type Nano Device: MEND) exhibited pDNA expression activity that was dependent on the MMP expression level in the host cells. In vivo studies further revealed that the PPD was potent in stabilizing MEND in the systemic circulation and facilitating tumor accumulation. Moreover, the i.v. administration of PPD or PEG/PPD dually-modified MEND resulted in the stimulation of pDNA expression in tumor tissue, as compared with a conventional PEG-modified MEND. Thus, MEND modified with PPD is a promising device, which has the potential to make in vivo cancer gene therapy achievable.

Correspondence:

Dr H Harashima, Laboratory for Molecular Design of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo city, Hokkaido, 060-0812, Japan. E-mail: harasima@pharm.hokudai.ac.jp

Full article available online.

(C) Gene Therapy.

Posted by: Tressie Dalaya.


Message posted by: Trevor M. D'Souza

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.