home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
  HUM-MOLGEN -> biomedical companies   |   search    |   registration     |   modification  

registry of biomedical companies

  August 25, 2019
promoting the transfer of scientific know-how between industry and academia
Registry of biomedical companies:

[1] [3] [4] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z] 521 active entries


An SBO Company
Toll free: +011-604-941-9022 (help line)

Phone: +011-604-945-8408 (land line)
Fax: +011-604-941-9022 (FAX line)
E-Mail: This e-mail address is being protected from spam bots, you need JavaScript enabled to view it


IBPN & BIOKEROSENE (Canada). We are an information company and one-man outfit located out in the West Coast of Canada.

We are searching for a Philippine Industrialist (CAN-PHIL Citizenship) in partnership in Indonesia.

IBPN will be launched in Indonesia and eventually manufactured in Siberia, hundreds of miles north of Ohkotsk, Russia and in Canada depending on environmental decision-making regarding safesures to be ensured by manufacturers for export and local us e. 

  • Tires
  • Countertops
  • Tarp, tents
  • Uniforms
  • Decking
  • Roofing
  • Pavement (e.g. cut-n-cover or jigg-saw patterning)
  • Airport Aprons
  • Aviation fueling
  • Oil Drilling
  • Transportation power and fueling
  • Household Soaps and other Bio-detergents for Industrial Use


Synthesizing a New Industrial-Class Polymer: Iminobenzoprene Nitrile (IBPN).

by D A Flores


The new industrial-class polymer described here is modeled after the elastomerized polymer that is based on imino groupings intermittently interrupted with stronger double bonds similar to rubber's isoprene units. Further to this, are the addition of benzene rings  in the "flagged" positions of the 5-C moieties which will add density as well as strength to the double bondings.
By estimates the material is derived here from fibre, is sustainable via biofermentation to methane and then to sodium cyanide as starting material. It is the "amalgam" of polymer, and lignin, from the residual of the former process, that a high-density rubber asphalt-like substance will be derived and made into various applications as for e. g.: (1) ramps for commercial industrial applications, (2) driveways and sidewalks for residential and public buildings, (3) aprons and runways of airports in avionics, (4) "stone masonry" for indoor such as kitchen surfaces and bathroom/outdoor pavings and (5) sealing for roadways by cut-n-paste or jigg-saw.

Structure Proofing: Functionality and Properties.

To the best of our knowledge there are no competing side-reactions of imino groups in situ with products as they will not likely oxidize to cyanide. It is still debatable as to the polymers' chloro- and cyano- end groups and whether these are to be derivitized further to stable end groups. 

We will not delve any further into the schema provided by cortesy of the author (see: Fig. 1) as the reactions based on their relative redox potentials is descriptive for themselves based introductory organic chemistry and are self-evident. 

The reactions initialize and eventually "get the ball rolling" by first setting up the "copolymers", as they are called, and then without using other multifunctional protecting groups, the molecules by their "bifunctionality" react from one "front backend" to the other "back frontend."
A "biosafe" reactor with (1) a "core" and (2) outer chambered conduits similar to a nuclear reactor's conformation will be used as a safe manufacturing facility for all manufactured IBPN polymeric-based materials (see: list above). The "physical process" can be described in sequence based on the theoretical reactions as follows: (a) biofermentation of fibre and storage as natural gas (CH4) or direct use from oil/gas exploration in the Philippine Islands; (b) the Andrussow Process is used to manufacture cyanide poweder (white powder, v. toxic) formed by ububbling or passing over CH4(g) + NH3(g) over Pt (catalyst) with caustic soda added next and the NaCN stored as the v. toxic substance that it is; (c) the powder is fed to dissolve in benzene(l) at the reactor "core" and Cl2(g) (poisonous) bubbled through with catalyst added (?); (4) to the outer blank moulds as reaction chambers are mixed 2:1 the product thereof with NaH(aq) (sodium hydride) in a slurry slowly titrated by NaOH base and with H2(g) evolved and evacuated; and finally, (5) H2(g) is collected via negative pressure as automated runners to sheet or mould presses into fabricated pieces or product.
It should be mentioned that the fermentative process for starting material has not yet been stipulated and will have to be outlined further as progress is made in the techniques of bioengineering and co-culturing rumen fungal spp. and with methanogens and how to fine-tune this critical process further to commercial viability.

Economic Valuation of IBPN's Applications.

Although we will not say how much in the hundreds of millions of dollars these products or commodities we describe represent, one can attach a rough "guestimate" of an economic figure by noting each time one runs through the newspaper story on public works or urban planning in one of our own municipalities how much was spent last time on the project as to how much road work costs. And further, how muchs your driveway was cost-estimated by contractors, the latest airport refurbishment of our runways or bathroom and kitchen refinishing or even the last repot holing project after a hard winter's season these will tell the story on what our new high-performing "vamp" or "home construction" material will cost, and one that is green due to its sustainability.

Last Remarks.

This paper describes a means by which a new product  could contribute towards replacing gradually a  proportion of fossil fuel residual byproducts, viz. asphalt,  and to furthering our sights into looking at ways we can expand use of ligno-cellulosic-based agro-industrial byproducts.
Biomaterials are coming out everyday in industry but this chapter gives further a new look into extending production of eco-friendly materials to the consumer for construction and utilities from biorenewables.
Fig. 1: A Schema for Synthesis of Iminobenzoprene Nitrile with Its Precursors.

                       (A)                                                (B)
                                                            Andrussow Process*
fibre ---------------------------> CH4 (g) -------------------------------->   NaCN   (white powder, v. toxic) 

       oil  /  gas  exploration


                                   benzene                                   Cl2(g)                         ..
NaCN: ---> :C=N: --------------------->  benzyl-C=N:------------------>benzyl-C=N   (precursor)
       benzene                                                                                              |   |
                                                                                                                  Cl Cl



                                                               NaH                                             ..      ..                           
Cl-C=N-Cl  +  Na C=N: ------------------------------------------------------> Cl-C=N-C=N   
      I                                                    benzene                                      |                             
     benzyl                                                                                              benzyl

                                                                       1 NaH (aq)                           
               ..       ..                                  ..       ..                               ..      ..       .. 
1   Cl-C=N-C= N        +         1   Cl-C=N-C=N  ----------->    Cl-C=N-C=N-C=N-C=N:   +  H2 (g)   +    H2O (l)   +   NaCl (s)    
          I                                              I            [OH- titrated        I        I       I
         benzyl                                    benzyl     with H2O]      benzyl   H  benzyl



          ..               ..                  n                          ..       ..      ..       ..           ..
Cl-C=N-C=N-C=N-C=N:--------------->  Cl--(--C=N-C=N-C=N-C=N--)--C=N-C=N:     
     |        |        |                    NaH                    |       |        |       |    |    n            
benzyl   H   benzyl                                     benzyl H   benzyl H benzyl

                                                                        Iminobenzoprene Nitrile

Courtesy of D. A. Flores. 2017 (c). Skye Blue Publications, Pt. Coquitlam BC Canada  V3B 1G3.
*Andrussow Process:
                                       3 O2(g)                                                 NaOH
2 CH4(g) + 2 NH3(g)--------------------->   2 HCN    +   6H2O -------------------> NaCN  (dried rapidly)  
                               Pt                                (or caustic soda)
SKYEVIEW: There are statistics out that in Germany the rate of plastic particulates in the environment that could end up in the water supply from tires is close to 100,000 tons. The use of IBPN material that is less given to corrosion together with binders could be one solution to this potential threat to our environment and throughout the industrialized and developing world. 
SKYEVIEW: There are also plans to manufacture for the Australian and Philippine markets advanced bio-detergent formulations from suberin esters taken from boosted root biomass in seagrasses, developed in Armidale, Australia, then manufactured in the Indonesian plant, where a growing demand for soaps or detergents mostly for laboratory, laundry and kitchen applications and personal care chemical reagents from a growing trend in modernity with populational growth is expected to occur. The long-chain alcoholic components will be oxidized to their fatty acid derivatives using enzymatic biologicals. The nature of the biodegradability of the biomaterial and the nature of its bioprocessing (viz. bio-extraction and bio-oxidation) gives the new term bio-detergents for the markets.
SKYEVIEW: Thus far, we have not received corroborating reports of pulping & fungal-driven coupled with Methanobrevibacter for methanogenesis to be used as a pilot project to evolve or generate CH4 (g), a starting material followed by cyanide (g) production, albeit, highly toxic to the environment, although there are established systems used to power local electrical grids such as in Washington State, but that still leading to questions of sustainability and dependability of the biorenewable energy generating system using farm wastes and other organic inputs. At SkyeBlue we are surmising whether the rumen model presented for such a commensal microbial ecological "pair" could be robust enough to generate reproducible or predictable CH4 (g) generation, including our suggestion to further disinhibit fermentation in the bioreactor. There are plans to establish plants for manufacturing formaldehyde, depoting and transport of materials to TransSiberian Railway to points in the sub-Arctic
and contractual to manufacturers in Canada for the Arctic. 
SKYEVIEW: Recent finds at SkyeBlue with non-GMO applications using for, e. g. direct-applied PNA-B12 delivery systems for gene silencing have recently struck us not only for biomass fermentation and digestion and as health related anti-microbial topicals but for biofermentation in industry for chemical, food and, a v. large area, energy manufacturing to for e. g.: (1) cut down processing time of inputs or materials, (2) cut down  cost of inputs and (3) improve process related qualities that are commercially viable. We predict it will become an explosive field such as EtOH fermentation production and butanol fermentation using both high-lignin and low-lignin, HQ feedstock as fodder for the process which present the major barrier to current fermentation processing in terms cost-effectiveness approaching both: (1) metabolic qualities cellularly or (2) cell proliferative qualities of the cell systems. 

Selected Categories:
Product Company   Service Company
- General
- Services
- Communications

Last update of this entry: August 21, 2019

home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap

Generated by companies 4.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2019 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.