Registry of biomedical companies:
[3] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 460 active entries
An SBO Company
C. -B.
Canada Toll free: +011-604-941-9022 (help line)
Phone: +011-604-945-8408 Fax: +011-604-941-9022 (FAX line)
E-Mail:
This e-mail address is being protected from spam bots, you need JavaScript enabled to view it
Please notice: This entry hasn't been updated by the submitting company for more than 2 years. It could be possible that this company doesn't longer exists.
Description:
Development Biotechnology J. Published at SBO: A., B. Animal Feeds & Livestock Production Science. Agrobiotechnology & animal production systems, the pressing issue of environmental stability or impact by encroachment of production systems and livestock resources and the new open discussions on how they will impact and how to manage agro-economic resources in developing countries with further economic development. In particular, we are concerned here with: systems studies of new approaches or how to improve production and economies of production, how to transfer information on farmer problems to researchers as a way of reaching farmers and the most important issue of all and that is technology, viz. how to transfer technological innovations from the research community to farmers. C. Food Security, Trade, Climate Change and Water Resources. D. The Approaches to Livestock Production Systems. As defined in: "Small Ruminant Production: Systems for Sustainability," V. International Conference on Goats, 28-29 February 1992, Park Hotel, New Delhi INDIA; is the study of inextricable components in biological areas, e. g. agro-biotechnology, animal production science, and feed science & technology, in areas such as nutrition & health, and socio-economic research and extension or field study, for e. g., marketing and women's native role and as organized at a micro-business level and the role of capital financing through micro-loans. E. Natural Resources Development. Forestry (i. e. Silviculture) & Forest Products Industry, Marine Resources- Seafood (in general), Algae, Seaweed and Seagrasses and Energy through Alternative Sources. F. Environmental Degradation, Management and Climate Change & Maintaining Biodiversity. G. Health Watch in Cancer Prevention and Therapeutic Intervention. On a recent update of health and possibly developing pharmaceuticals from neurhormones for cancer therapy from enhanced targeted immunomodulation, it to use them hypothetically to "hyperactivate" the ff.: [a] Cytotoxic T cells, [b] Macrophages and [c] Killer cells (NK, K). Delivery of gene targets in question using engineered transcription factors (TFs) to activate neurhormones is via germinal blood cell lines of origin for immunocell generation (cf. T, B cells and their origins- Thymus and Bursa) as a delivery system via blood infusions. It is proposed that sheep models be used (cf. ARC, Agriculture and Agri-Food Canada, as proposed). As it stands there are other cases where neurhormones might precent further scope for discovery for immunocontrol in particular imposed on immune cells and their metabolism outside current dogma where they are known currently to be involved with the adrenergic response system from neuronal enervation of the CNS. New Book Publication: ”Biotechnology for Feed, Food and Energy.” D. A. Flores. 2019 © For submission to Ingram Spark Distributors, USA or Austin MaCauley, London U.K.
SAMPLE CHAP.: Genetic Engineering Crops on the Farm – Part I A. Genetic Engineering (GE)=manipulating the composition and the function of genes or DNA (ie. its molecules) with molecular tools for productive ends (e. g. agriculture productive traits). Old Strategies with GE. Transgenic Bt crops (e. g. corn, soya beans, wheat, cotton) that are incorporated with the anti-Bacillus thuriegensis (Bt) insecticidal protein that is lethal to the gut of bore weevil pest, and Liberty and Basta ® corn that are both herbicide tolerant. Methods Used for Transgenesis (transfer of DNA):
a. Plasmids - vectors of small circular pieces of DNA or transfer elements with the "gene of interest" spliced in, used for e. g., with microbes modified in the animal's gut's digestion. b. Protoplasts are cells that have been removed of their outer cell wall leaving only the outer membrane (OM) barrier against transfection for DNA transfer c. Agrobacterium tumefaciens are engineered (modified) infecting viral DNA vector used with plants via these vectors. d. Biolistic propulsion is by shooting gold DNA-coated particles through the calli or pluripotent vegetative cells that regenerate into plantlets. e. Electroporation is application of an electric field to create pores in the OM for DNA to enter and transfect. New Strategies to “De-Risking” GE for the Consumer to Consider. Genome Editing- make genetic engineering (GE) more palatable for the consumer? 1) Genome Editing, what is it? Process in essence involves specially designed endonucleases (endo=into) that cleave DNA molecules causing DSB (double-stranded breaks) in the double helix structure. It is then the host cell’s task to repair the DSB using the “darning” technique wherein the DNA is “stitched” back by end-joining non-homologous-type enzymes using unlike ends or the desired end of homologous-type enzymes resulting in a perfect gene copy insert. The successfully transformed cells with the gene of interest are then selected out via various experimental methodologies also called protocols via agrifiltration and then plantlet regeneration. 2) Mitochondrial (mt) DNA cloning: maternal-side inheritance with no pollination conceivable to virtually insure environmental safety. Considerations: The organ(elle) of the mitochondria is the power house of the cell’s unit with its own complement or set of DNA separate from the plastid & nuclear DNA. Cloning of gene(s) of interest is into specifically the mtDNA. Maternal segregation of inheritance of mtDNA is the key point in that it is exclusively contained and does not spread through plant pollen. NOTE: There are many more technical hurdles and research goals to attain before engineering the mitochondrial genome becomes feasible. One area is understanding mt genetic processes and regulation pathways including inheritance of many economically significant traits and genetic interactions between organellar & nuclear genes, for e. g. some mitochondrial genes are known to migrate to the nucleus.
3) Possible Approaches with Genome Editing: using gene cassettes with regulatory genes and structural genes that code for enzyme upregulation or boosted expression or downregulation or lowering expression via repression using interferent RNA (RNAi) which we will not go into here further and which won a Nobel Prize are all ways of using GE to manipulate genes and 1) their regulated activities (including deletion altogether), 2) their qualities by modifying their DNA sequences, 3) in addition to introducing novel genes or DNA material altogether (2, 3 would be more controversial of these). B. Regulatory Issues of GE Crops: 1) Commercial aspects of GE (patenting rights; licensing) to sell and own seed by giants like Monsanto is recognized but licensing is required if organized, legal distribution and end-use can be achieved with GM seed. There are international licensing authorities to oversee this practice. Genes are the stuff of intellectual property. There are brokers who act to transfer royalties that are free in the biotechnology industry to benefit smallholder African farmers, for e.g., public-private entities help to develop GM crops and in developing countries is public-funded but the private licensing entities are said to eventually control markets for the patented product. Since the regulatory process (by the USDA, U.S. Dept. of Agric. in the U.S.A.) is a complex and expensive process this proposal fits and will be confined to commodity crops (e. g. maize, soya beans). Since the introduction of the CRISPR/CAS9 system of genome editing in 2012 the USDA has indicated its willingness to review its rules in light of new technologies. 2) GMOs are defined as both older transgenics as well as genome edited GE organisms. The use of the term GMO will refer to these organisms due to their shared biosafety risk concerns for the environment to which they would be exposed despite their different genetic constructs. There is considerable debate in the press and Internet in this area for their use. Concerns or Issues of Old Transgenesis vs the New Genome Editing of GMOs on the Farm: a) Food Safety to the Consumer. Genome editing eliminates the addition of foreign DNA (e. g. viral DNA) in genetic engineered foods and crops compared to transgenic GE (e. g. Agrobacterium tumefaciens, an engineered plant virus) b) Making Modified “Endogastric Symbionts” a Possibility. Larger DNA vectors with plasmid transgenics result in more radical changes to the microbial phenotype and means less likelihood of its survival in a highly complex, competitive environment. Genome editing results in the exact gene copy insert modification. c) Possible Bio-containment Strategies: Biosafety / Biodiversity 1. Wild-type crops vs. inbred lines: mt containment 2. Autochthonous populations in soils, water and plant surfaces: feeds irradiation (UV-C) 3.”Endogastric symbionts” passed on commensaly via saliva and cud with ungulates: quarantined inoculated animals
d) Challenges presented by Climate Change / Global Warming with GE Crops: Flood tolerance Drought tolerance (irrigation is key to answering this issue in the first place) Salt tolerance Pest, insect and root-larval or parasitic resistance
e) Challenges presented by Issues with Global Food Security: feed-efficiency traits in agronomy Low-protease forages in grasses, trees & shrubs/heat-treated Hi-sugar grasses, trees & shrubs Low-lignin forages; e. g. alfalfa is now in the market USDA-approved
And others: Beta-carotene (Vit-A) golden rice Higher rate N-fixation cultivars Higher C-sink crops (i. e. boosted photosynthetic rate) Higher micro-mineral uptake and sequestration cultivars for fallow enrichent of organics in soils and soil microbes Declaration: Presently, we have declared a moratorium on genetic recombinant engineering on crop and animal biotechnology for food and in the environment for protection.
Selected Categories:
Last update of this entry: May 19, 2019
|