|
|
Drinking alcoholic beverages has been linked to an increased risk of upper gastrointestinal cancer and other types of cancer. Researchers looking for the potential biochemical basis for this link have focused on acetaldehyde, a suspected carcinogen formed as the body metabolizes alcohol. In the journal Nucleic Acids Research (vol. 33, num. 11), scientists from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute of Standards and Technology (NIST) report that polyamines – natural compounds essential for cell growth – react with acetaldehyde to trigger a series of reactions that damage DNA, an event that can lead to the formation of cancer.
The research team, led by P.J. Brooks, Ph.D., of NIAAA and Miral Dizdaroglu, Ph.D., of NIST, examined acetaldehyde’s reaction with polyamines, small molecules found in all cells. “Polyamines are usually considered ‘good guys,’ because they have been shown to protect DNA from oxidative damage,” says Dr. Brooks. Yet the researchers found the polyamines facilitated the conversion of acetaldehyde into crotonaldehyde (CrA), an environmental pollutant that has been shown to cause cancer in animals. This chemical in turn altered DNA, generating an abnormal, mutagenic DNA base called a Cr-PdG adduct. Dr. Brooks says, “We concluded that polyamines stimulated the formation of Cr-PdG adducts from acetaldehyde, and this may provide a mechanism to explain how alcohol consumption increases the risk of some types of cancer.” An important part of this research was a new chemical analysis method developed at NIST. According to Dr. Dizdaroglu, “This novel chemical assay is a powerful method that accurately measures the Cr-PdG adduct.”
Message posted by: Rashmi Nemade
|
|
Variants Associated with Pediatric Allergic Disorder
Mutations in PHF6 Found in T-Cell Leukemia
Genetic Risk Variant for Urinary Bladder Cancer
Antibody Has Therapeutic Effect on Mice with ALS
Regulating P53 Activity in Cancer Cells
Anti-RNA Therapy Counters Breast Cancer Spread
Mitochondrial DNA Diversity
The Power of RNA Sequencing
‘Pro-Ageing' Therapy for Cancer?
Niche Genetics Influence Leukaemia
Molecular Biology: Clinical Promise for RNA Interference
Chemoprevention Cocktail for Colon Cancer
more news ...
|