home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> Genetic News | search  
 

Creating Artificial Bone from the Ocean

 
  February, 1 2006 14:43
your information resource in human molecular genetics
 
     
Researchers supported by the National Institute of Dental and Craniofacial Research (NIDCR), part of the National Institutes of Health, report they have harnessed the unique physics of sea water as it freezes to guide the production of what could be a new generation of more biocompatible materials for artificial bone.

As published in the January 27 issue of the journal Science, the researchers used this novel technique to produce a thinly layered composite, or hybrid, structure that more closely mimics the natural scaffolding of bone. The scientists said their initial, proof-of-principle scaffolds are desirably ultra lightweight and up to four times stronger than current porous ceramic implant materials.

According to Dr. Antoni Tomsia, a scientist at Lawrence Berkeley National Laboratory in Berkeley, Calif. and senior author on the paper, the still nameless freezing technique, with further technical refinements, could churn out even stronger materials and could be scaled up to fabricate larger structures, such as replacement hips and knees and a variety of dental materials.

He also noted that it easily could be adapted to make layered composites for variety of industrial purposes, ranging from airplane manufacturing to computer hardware. “Freezing is the engine that drives the production process,” said Tomsia. “But the engine is undiscriminating in the composites or polymers that it fabricates.”

The freezing technique reported this week builds on two longstanding research challenges in orthopedics and the related field of tissue engineering. The first is the need for better, more biocompatible materials to serve as artificial bone. Most current materials, such as metal, were originally developed for non-medical purposes and thus poorly match the natural architecture of bone and other tissues, sometimes triggering inflammation and chronic soreness in the joint.

The second challenge is to figure out how to make porous scaffolds for bone regeneration with enough strength for load bearing applications. Tomsia said strong, porous structures would allow cells to infiltrate into the implant, adhere to it, and more fully integrate with the synthetic material.

And therein lies a rub. “How do you make porous scaffolds strong?” asked Tomsia. “It’s a contradiction in terms. It’s like asking, how do you make Swiss cheese strong? But nature certainly does it all of the time.”

Nature does it in large part by building bone at the nanoscale, the one-billionth of a micron world that scientists have begun to pursue in the emerging field of nanotechnology. “Our bones are made of organic and inorganic materials that individually aren’t very strong,” said Dr. Sylvain Deville, a member of Tomsia laboratory and lead author on the paper. “But when nature weaves them together at the nanoscale, the scaffold structure of bone is quite strong and durable. The question is how can people learn to make composite materials on the same micro scale as nature?”

CONTACT:
Bob Kuska
301-594-7560


Message posted by: Rashmi Nemade

print this article mail this article
Latest News
Variants Associated with Pediatric Allergic Disorder

Mutations in PHF6 Found in T-Cell Leukemia

Genetic Risk Variant for Urinary Bladder Cancer

Antibody Has Therapeutic Effect on Mice with ALS

Regulating P53 Activity in Cancer Cells

Anti-RNA Therapy Counters Breast Cancer Spread

Mitochondrial DNA Diversity

The Power of RNA Sequencing

‘Pro-Ageing' Therapy for Cancer?

Niche Genetics Influence Leukaemia

Molecular Biology: Clinical Promise for RNA Interference

Chemoprevention Cocktail for Colon Cancer

more news ...

Generated by News Editor 2.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2023 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.