home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
  HUM-MOLGEN -> biomedical companies   |   search    |   registration     |   modification  
 

registry of biomedical companies

 
  June 25, 2018
promoting the transfer of scientific know-how between industry and academia
 
 
Registry of biomedical companies:

[1] [3] [4] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 556 active entries

LIFE PRODUCERS ASSOCIATION

-/ 1440 Barberry Dr. PT COQ BC V3B1G3
Canada
Canada
Toll free: +011-604-941-9022 (help line)

Phone: +011-604-945-8408
Fax: +011-604-941-9022
E-Mail: This e-mail address is being protected from spam bots, you need JavaScript enabled to view it

Description:

 


To study the energy / protein (MCP / feed escape or bypass) output of biomass from the specialized rumen stomach of dairy cows we consider plant material substrate and microbial cell growth.  

There may be theoretical bases for studying factors that could help determine the efficiency and action of microbial cell protein (MCP) synthesis.  These have been pointed out at SkyeBlue to be aspects of microbial physiology/biochemistry: (1) transport processes & rates; (2) mitogenesis or rate of cell division as possible functions of ATP, NADPH, THF, B12, and DNA synthesis; (3) apoptosis or cell death such as fructan oligosaccharide (FOS) related to alpha-TNF and cell death at least in equine peripheral blood cell models but not lower cells, and, finally, the most reasonable of our possible mechanisms or functions, (4) uncoupling of energetic efficiency (see: SKYENEWS).

To discuss the plant material as substrate for microbial digestion and growth, the following factors figure in: (1) ligneous components in feedstock and digestibility of fibre, (b) boosting fructan content or water-soluble sugars, (c) plant protease activity in crops and resulting pre-formed amino acid and peptide availability to rumen microbes and their synthesis and identifying further the matter of synthesis of limiting essential amino acids in microbial metabolism.

These are crucial to understanding how to increase milk output in dairy cows to start studying the underlying molecular mechanisms in microbial and plant material, we believe, is nearing a breakthrough now after a number of decades study. 

 

Probiotics Genomics 

We are currently investigating possible uses of yeast (fungi) which subsistent as rumen probiotics for essential amino acids metabolism in microbes and their growth and surrogate proteins high in limiting essential amino acids to rebalance amino acids profiles reaching the duodenum of cows. We are also investigating use of fungal species and their increased capacity for fibre digestion via lignases ( esterases, etherases, lyases). 

 

The GMO Booster Milk Cow (R) 

Cytobiology with DNA precision engineering and IVF can be used to introduce O/P regions in cassettes coding for the synthesis and secretion of milk food proteins, casein and lactoferrin, two proteins that have been studied to have an effect in protecting against certain cancers and which should be introduced in cow's milk in semi-industrial country markets (e. g. India, Russia and China) where life-style calls would indicate these medicinal properties as a strong selling point similar to "golden" rice with beta-carotene by Monsanto. GMO cows and their sires will eventually be backcrossed (there are various schema that can be used here) to build a sufficient 'gene pool' to bring about heterosis along with the gene edited genomic backgrounds as with growth rate, carcass quality, feed conversion efficiency and vigour, as examples. It is suggested that facilities at the Macdonald College Farms of McGill U. and in North, Central and Coastal Queensland (AU) will take up these research goals in future with a go ahead in GMO cow production.  

 

Interventives for the GMO Booster Milk Cows (R) 

The ff. will be used to overcome or supplement the low-protein problem from the digestion of low-quality feeding regimes.  The following are to be employed when feeding the GMO cow: (1) supplementation  with HIS over-producers in yeast functional feeding; (2) supplementation with Met over-producers in yeast functional feeding; (3) interventive low-protease feeds to conserve manio acid availability in forages; (4) low-buffering capacity (Bc) from prebiotic interventives using enzyme technology active in plant forage; (5) using ensilage inoculants for fibrolysis with co-cultured feedback disinhibition to improve silage quality from acidity with fermentation of sugars to lactic acid; (6) yeast for rumen probiotics boosted for fibrolysis and increased CP yield in the microbial rumen stomach using mutagenic protoplast fusion (viz. genetically manipulated (or GM) but considered a "non-GMO", and with 'surrogate' storage proteins that have limited solubility and to attach by microbial and plant proteases; and, finally, (7) use of hi-amino acid forages from GM of their metabolic capacity to produce and store selected amino acids, e. g. MET and HIS in alfalfa.  The GMO cow will be supported by these "green" technologies with various of these low-quality feeds designed to deliver total feed efficiencies that are admirable, compared to more normal feeding situations in line with the technologies used here. 

 

SKYE BLUE INTERNET ® 

All copyright held by D. A. Flores. 2003-2016. All rights reserved. Disclaimer.  

Information in Companies. Working for Information.

Made for Information. ®

 

   



Selected Categories:
Product Company   Service Company
Consulting
- General
Contract
- Services
Professional
- Communications

Last update of this entry: May 30, 2018

   
 
home   genetic news   bioinformatics   biotechnology   literature   journals   ethics   positions   events   sitemap
 
 
 

Generated by companies 4.0 by Kai Garlipp
WWW: Kai Garlipp, Frank S. Zollmann.
7.0 © 1995-2018 HUM-MOLGEN. All rights reserved. Liability, Copyright and Imprint.